Metade do calor da Terra vem do decaimento radioativo

Geoneutrinos
Cerca de 50% do calor liberado pela Terra é gerado pelo decaimento radioativo de elementos como o urânio e o tório.
Esta é a conclusão de uma equipe internacional de cientistas que usou o detector KamLand, no Japão, para medir o fluxo de antineutrino emanados do interior da Terra.
A cadeia de decaimento dos elementos radioativos libera também antineutrinos do elétron, que atravessam facilmente a Terra, podendo ser detectados próximo à superfície.
Decaimento radioativo responde por metade do calor da Terra
A metade da esquerda mostra a
simulação da produção de geoneutrinos,
e a metade da direita mostra a
estrutura da Terra.
[Imagem: Kamland/Stanford]
Em 2005, cientistas do KamLand anunciaram a detecção de 22 desses geoneutrinos. Ano passado, um grupo do experimento Borexino, na Itália, detectou 10 deles. Agora, a equipe do KamLand contou 111 dessas minúsculas partículas sem massa.
Calor da Terra
Os resultados combinados permitiram que o grupo calculasse que o fluxo de calor emanado do centro da Terra, fruto do decaimento radioativo, é de 20 TeraWatts (TW), com uma incerteza de 8 TW.
"Uma coisa que podemos dizer quase com certeza é que o decaimento radioativo sozinho não é suficiente para explicar todo o calor da Terra," explica Stuart Freedman, colaborador do KamLand. "Se o resto é calor primordial ou se vem de outra fonte é uma questão ainda sem resposta."
Os geofísicos calculam que o calor flui do interior da Terra para o espaço a uma taxa de 44 x 1012 Watts (TW). Mas ainda não estava claro quanto desse calor é fruto do decaimento radioativo e quanto dele é um resquício do calor primordial, gerado na formação do planeta.
Os novos resultados indicam que 20 TW são gerados pelo decaimento radioativo - 8 TW da cadeia de decaimento do urânio-238; 8 TW do tório-232 e 4 TW do potássio-40.
Detector de antineutrinos

Decaimento radioativo responde por metade do calor da Terra
O detector KamLand é uma
gigantesca esfera contendo 1.000 toneladas
de óleo mineral, localizado nas profundezas
de uma mina subterrânea no Japão.
[Imagem: Kamland/Stanford]
O detector KamLand (Kamioka Liquid Scintillator Antineutrino Detector) é uma gigantesca esfera contendo 1.000 toneladas de óleo mineral, localizado nas profundezas de uma mina subterrânea no Japão, para que a camada de rochas o proteja dos raios cósmicos.
O material do interior do balão é monitorado constantemente por 1.800 tubos fotomultiplicadores.
Quanto um antineutrino atinge um próton no óleo gera-se um nêutron e um pósitron (um anti-elétron). O pósitron move-se uma pequena distância dentro do óleo, ionizando suas moléculas, o que causa a liberação de um flash de luz.
O pósitron então se choca com um elétron, aniquilando ambos com a emissão de dois fótons de raios gama.
O papel dos tubos fotomultiplicadores é detectar essas emissões de luz. A energia do antineutrino pode ser calculada a partir da intensidade do brilho liberado no processo.
Alguns milissegundos depois, o nêutron gerado na chegada do antineutrino é capturado por um próton, formando um deutério, o que também causa a emissão de um raio gama, igualmente detectado pelos fotomultiplicadores.
Identificando os dois sinais coletados pelos fotomultiplicadores, os cientistas observam suas separações no tempo, para identificar o que foi originado pelos extremamente raros antineutrinos e o que é resultado da "radiação de fundo".

Bibliografia:

Partial radiogenic heat model for Earth revealed by geoneutrino measurements
The KamLAND Collaboration
July 2011
Vol.: Published online
DOI: 10.1038/ngeo1205




Nenhum comentário:

Postar um comentário